Heavy metals in the environment and their health effects


Heavy metals have a density of 6.0 g/cm3 or more (much higher than the average particle density of soils which is 2.65 g/cm3) and occur naturally in rocks but concentrations are frequently elevated as a result of contamination. The most important heavy metals with regard to potential hazards and occurrence in contaminated soils are: arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb) and zinc (Zn).

The sources of heavy metal pollutants are metal mining, metal smelting, metallurgical industries, and other metal-using industries, waste disposal, corrosions of metals in use, agriculture and forestry, forestry, fossil fuel combustion, and sports and leisure activities. Heavy metal contamination affects large areas worldwide. Hot spots of heavy metal pollution are located close to industrial sites, around large cities and in the vicinity of mining and smelting plants. Agriculture in these areas faces major problems due to heavy metal transfer into crops and subsequently into the food chain.

Health effects of selected heavy metals

Arsenic (As). Arsenic is well-known as a poison and a carcinogen. It has an average concentration in the soil of 5 to 6 mg/kg. Its amount in the soil is related to rock type and industrial activity.

Cadmium (Cd). Its toxicity is linked with reproduction problem because it affects sperm and reduces birth weight. It is a potential carcinogen and seems to be a causal factor in cardiovascular diseases and hypertension. Large concentrations of Cd in the soil are associated with parent material (black slates) and most are manmade (burning of fossil fuels, application of fertilizers, sewage sludge, plastic waste).

Chromium (Cr). It is required for carbohydrate and lipid metabolism and the utilization of amino acids. Its biological function is also closely associated with that of insulin and most Cr-stimulated reactions depends on insulin. However, excessive amount can cause toxicity. Toxic levels are common in soils applied with sewage sludge.

Lead (Pb). This has been known to be toxic since the 2nd century BC in Greece. It is a widespread contaminant in soils. Lead poisoning is one of the most prevalent public health problems in many parts of the world. It was the first metal to be linked with failures in reproduction. It can cross the placenta easily. It also affects the brain, causing hyperactivity and deficiency in the fine motor functions, thus, it results in damage to the brain. The nervous systems of children are especially sensitive to Pb leading to retardation. It is also cardiotoxic and contributes to cardiomyopathy (disease of the heart muscle leading to the enlargement of the heart).

Mercury (Hg). This heavy metal is toxic even at low concentrations to a wide range of organisms including humans. The organic form of mercury can be particularly toxic, and the methyl-and ethyl-forms have been the cause of several major epidemics of poisoning in humans resulting from the ingestion of contaminated food, e.g. fish. Two major epidemics in Japan were caused by the release of methyl and other mercury compounds from an industrial site followed by accumulation of the chemicals in edible fish. The poisoning became well-known as Minamata disease.

Nickel (Ni). Nickel occurs in the environment only at very low levels. Humans use nickel for many applications like the use of nickel as an ingredient of steel and other metal products. Foodstuffs have low natural content of nickel but high amounts can occur in food crops growing in polluted soils. Humans may also be exposed to nickel by inhalation, drinking water, smoking, and eating contaminated food. Uptake of high quantities of nickel can cause cancer, respiratory failure, birth defects, allergies, and heart failure (www. Lenntech.com/periodic-chart-elements/Ni-en.htm)

References

Oliver, M.A. 1997. Soil and human health: a review. European Journal of Soil Science 48: 573-592.
Puschenreiter M., O Horak, W. Friesel and W. Hartl. 2005. Low-cost agricultural measures to reduce heavy metal transfer into the food chain- a review. Plant Soil Environ 51: 1-11.
Susaya JP. 2007. MSc thesis. Institute of Tropical Ecology, Visayas State University, Baybay, Leyte, Philippines.


Comments

Popular posts from this blog

Tropical soils: some important aspects of these less understood soils

Brief history and current state of soil science in the Philippines

Nutrient addition as a forest restoration management strategy for Yakal yamban seedling establishment in ophiolitic soils